Existence of a periodic mild solution for a nonlinear fractional differential equation
نویسندگان
چکیده
منابع مشابه
Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملexistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
this paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. we show that it has at least one or two positive solutions. the main tool is krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملON TE EXISTENCE OF PERIODIC SOLUTION FOR CERTAIN NONLINEAR THIRD ORDER DIFFERENTIAL EQUATIONS
متن کامل
Existence of Solutions for a Nonlinear Fractional Order Differential Equation
Let D denote the Riemann-Liouville fractional differential operator of order α. Let 1 < α < 2 and 0 < β < α. Define the operator L by L = D − aD where a ∈ R. We give sufficient conditions for the existence of solutions of the nonlinear fractional boundary value problem Lu(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = 0, u(1) = 0.
متن کاملExistence of Positive Solutions for a Nonlinear Fractional Differential Equation
Using the Schauder fixed point theorem, we prove an existence of positive solutions for the fractional differential problem in the half line R+ = (0,∞): Du = f(x, u), lim x→0+ u(x) = 0, where α ∈ (1, 2] and f is a Borel measurable function in R+ × R+ satisfying some appropriate conditions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2012
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2011.12.060